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Abstract

An optimal control algorithm for mitigating the effects of T1 and T2 relaxation during the application of long pulses is derived. The
methodology is applied to obtain broadband excitation that is not only tolerant to RF inhomogeneity typical of high resolution probes,
but is relatively insensitive to relaxation effects for T1 and T2 equal to the pulse length. The utility of designing pulses to produce specific
phase in the final magnetization is also presented. The results regarding relaxation and optimized phase are quite general, with many
potential applications beyond the specific examples presented here.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Optimal control theory has proven to be an extremely
flexible and powerful tool for designing pulses for NMR
spectroscopy. A particularly challenging problem, that of
producing uniform excitation over a broad range of chem-
ical shift offsets and RF field inhomogeneity/miscalibra-
tion, simultaneously, has been solved in a series of papers
demonstrating Broadband Excitation by Optimized Pulses
(BEBOP) [1–5]. The minimum pulse length of a given
BEBOP depends upon the performance level required for
the specific range of offset and RF variation accommo-
dated [3], but it can significantly exceed the length of a hard
pulse that would conventionally be used to excite the same
bandwidth (albeit nonuniformly and with poor tolerance to
RF inhomogeneity). So far, we have assumed that the lon-
gitudinal, T1, and transverse, T2, relaxation times are much
larger than the duration of the pulse, which will not always
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be the case in practice. We therefore consider the design of
BEBOPs that can minimize relaxation effects, or Relaxa-
tion Compensated-BEBOP.

The effect of relaxation on pulse performance has been
studied in detail by Hajduk et al. [6]. When T2 and/or T1

are comparable to the pulse length, tp, they not only found
the expected loss of signal due to relaxation, but a signifi-
cant degradation in uniformity of the excitation profile
for all the pulses they considered. However, the literature
on actual pulse design to mitigate the effects of relaxation
appears to be relatively sparse and applied to narrowband,
selective pulses. Nuzillard and Freeman modified BURP
pulses to obtain more uniform response over the selected
bandwidth with SLURP [7], but accepted what might be
considered the inevitable attenuation due to short T1, T2.
Rourke et al. [8] later developed an iterative method for
designing selective pulses to compensate for transverse
relaxation. The procedure they presented did not accom-
modate either T1 effects or RF inhomogeneity. They
obtained a significant improvement in the uniformity of
pulse response, but actual T2 losses were not provided,
and the method assumes 1/T2 is small [9]. Reference [9]
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derives a method for inverting the Bloch equation at a sin-
gle resonance offset for the special case T1 = T2. Its pri-
mary application is to pulses which select a specific
relaxation rate, which is different than what we are consid-
ering here.

Expanding on these earlier works, we explore more gen-
erally the possibilities for reducing relaxation effects during
long RF pulses (i.e., relative to T2 and/or T1). Optimal con-
trol can consider both T1 and T2 relaxation together with
RF inhomogeneity over any specified range of offsets,
either connected or disjoint. Moreover, there is a physical
basis for expecting to be able to compensate for relaxation
during the pulse: we can (i) use the long duration of the
pulse to position spins of different chemical shift at appro-
priate orientations near the z axis that enable them to be
subsequently transformed to the x, y plane by a short pulse
segment, reducing net T2 relaxation during the total pulse
and (ii) utilize the moderate, but still significant, repolariza-
tion that occurs for short T1. These possibilities for reduc-
ing relaxation effects are found quite naturally by the
optimal control algorithm, as shown in what follows. There
does not appear to be any other study which attempts to
reduce the effects of relaxation in pulses of length similar
to T1, T2.
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Fig. 1. Simulated performance of the phase-modulated BEBOP from Ref. [5] (
(right panel) for the T1 and T2 values listed on the right. The length of both pul
resonance offset, with the nearly perfect performance of the pulses in the absen
PM-BEBOP performance is significantly degraded for short T2 (bottom panels
comparable to the case of no relaxation.
2. Theory and methods

Optimal control theory applied to NMR spectroscopy
has been described in detail elsewhere [1–5,10–12], for
systems with no relaxation (i.e., infinite T1, T2). Here we
reiterate the main theoretical aspects and introduce the
necessary modifications associated with finite T1, T2.

During the time interval [t0, tp], we seek to transfer initial
z magnetization M(t0) for a system of non-interacting spins
to a desired final state F over a given range of chemical
shift offsets Dx and RF field inhomogeneity/miscalibration
for specified values of T1 and T2. The spin trajectories M(t)
are constrained by the Bloch equation

_MðtÞ ¼ xeðtÞ �MðtÞ þ D½M0 �MðtÞ�; ð1Þ

where M0 ¼ ẑ is the unit equilibrium polarization for
appropriately normalized units, the effective field, xe, in
angular frequency units (rad/s) is given in terms of the
time-dependent RF amplitude, x1, and phase, /, as

xeðtÞ ¼x1ðtÞ½cos /ðtÞ x̂þ sin /ðtÞ ŷ� þ Dx ẑ

¼xrf ðtÞ þ Dx ẑ; ð2Þ

and the relaxation matrix is
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Fig. 2. RC-BEBOP performance compared to a hard pulse for relaxation
times T2 = T1 = 1 ms equal to the RC-BEBOP pulse length. The maxi-
mum RF amplitude of all pulses is 15 kHz (16.7 ls hard pulse). Note the
change in scale between the two plots. (a) Mx components of the
magnetization resulting from application of a hard pulse and RC-BEBOP
designed to produce minimal phase dispersion are plotted as a function of
resonance offset. (b) Transverse Mxy is plotted for a separate RC-BEBOP
designed to allow a linear phase roll in the final spectrum and is compared
to the performance of a hard pulse. Despite conditions for potentially
severe relaxation, RC-BEBOP uniformly excites �99% of the transverse
magnetization over a bandwidth of almost 50 kHz.
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Proceeding as in our previous treatments, a time-dependent
‘‘hamiltonian’’ h is defined in terms of a Lagrange multi-
plier k as

hðtÞ ¼ kðtÞ � _MðtÞ ¼ k � ½xe �M þ DðM0 �MÞ�; ð4Þ
which returns the Bloch equation as

_M ¼ oh=ok; ð5Þ
with the known value M(t0) at the beginning of the pulse.
For a given cost function U chosen to measure pulse per-
formance, the optimization formalism results in the conju-
gate or adjoint equation

_kðtÞ ¼ � oh=oM ð6Þ
¼xeðtÞ � kðtÞ þ DkðtÞ; ð7Þ

with the value k(tp) = oU/oM required at the end of the
pulse, giving k(tp) = F for the cost

U ¼MðtpÞ � F; ð8Þ

for example. In contrast to our earlier treatments without
relaxation, k(t) is governed by a different evolution equa-
tion than M(t). This is a result of the equilibrium polariza-
tion M0 in Eq. (1). In applications governed by a similar
evolution equation, but absent the M0 term (for example,
mixing pulses with relaxation [13,14]), the evolution of k

and M differ only in the sign of the relaxation term, D.
The final necessary condition that must be satisfied by a

pulse that optimizes the cost function is

ohðtÞ=oxeðtÞ ¼ 0 ¼MðtÞ � kðtÞ; ð9Þ
at each time. For a nonoptimal pulse, Eq. (9) is not ful-
filled. It then represents a gradient giving the proportional
adjustment to make in the controls, xe(t), for the next iter-
ation towards an optimal solution. Additional constraints
on the maximum allowed RF amplitude, xmax, may include
clipping, xrf(t) 6 xmax, or pinning, xrf(t) = xmax.

The numerical algorithm has been described previously
[1–5]. The addition of relaxation to the Bloch equation is
the only modification. For excitation, the choice F ¼ x̂
produces a pulse with the specified tolerance to RF inho-
mogeneity which drives all spins in the range of offsets con-
sidered to the x axis. The resulting spectrum therefore
requires no phase correction. However, this imposes a very
stringent requirement on the optimal control algorithm.

A linear phase dispersion in the final magnetization as a
function of offset is readily corrected in many practical
applications and might allow more flexibility in optimizing
the pulse. We therefore also introduce a target function

F ¼ cos u x̂þ sin u ŷ; ð10Þ
where u is defined as a linear function of Dx and gives the
angle between the final transverse magnetization at offset
Dx and the x axis. We have previously argued [5] that hard
90� pulses could be considered the benchmark for broad-
band performance in sequences that are readily phase-cor-
rected. In addition, hard pulses are likely the only option,
currently, for broadband excitation if relaxation effects
are important. We therefore choose the slope of u(Dx) to
be that of a hard pulse with the same xmax as the optimized
pulse under consideration.
3. Results and discussion

We recently presented a purely phase-modulated
BEBOP that provides an unprecedented combination of
excitation bandwidth and tolerance to RF inhomogeneity.
This PM-BEBOP gives uniform excitation of greater than
99% over the entire 200 ppm 13C chemical-shift range of
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a potential 1 GHz spectrometer, for a constant RF ampli-
tude anywhere in range 10–20 kHz [5]. However, the short-
est pulse that achieves this level of performance is 1 ms,
which could be problematic for applications with short
T2 and/or T1.

The loss of signal and distortion of the excitation profile
that occurs when relaxation times are comparable to pulse
length are illustrated in Fig. 1 for PM-BEBOP, operated at
the ideally calibrated maximum RF of 15 kHz. The results
are applicable to pulses in general when relaxation is a fac-
tor. For T2 = 1 ms, PM-BEBOP suffers a minimum 50–
60% signal loss for any allowed value of T1, and, as
expected, the excitation is no longer uniform over the offset
range. If T2 is 5 times longer, this pulse still suffers a 15–
20% signal loss compared to the ideal case of infinite T2.

Signal loss is reduced significantly, however, by incorpo-
rating relaxation into the optimal control algorithm. For
comparison, we designed relaxation compensated pulses
(RC-BEBOP) with a ±5% tolerance to RF inhomogeneity
(typical high resolution probes) and the same PM-BEBOP
excitation bandwidth of 50 kHz, optimized for the T1, T2

combinations listed in the legend to Fig. 1. For
T2 = 1 ms, RC-BEBOP excites 90–95% of the target Mx

magnetization for any T1, with excitation of at least 97%
for T2 = 5 ms.

By contrast, a hard pulse of the same 15 kHz amplitude
(t90 = 16.7 ls) is unaffected by a 1 ms T1 and T2, giving
slightly greater signal near resonance than RC-BEBOP,
as shown in Fig. 2. However, the excitation profile is ‘‘par-
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Fig. 3. The transverse magnetization Mxy(t) resulting from application of
the linear phase RC-BEBOP of Fig. 2b is plotted as a function of
resonance offset at the times shown in the figure legend. Spins at all offsets
stay very close to the z-axis (
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q
> 0:87) during the first 95% of the

pulse, with spins at the extremes of the bandwidth having been rotated the
farthest from z at each time. Relaxation effects are thus minimized by
positioning spins of each offset at the proper orientation near the z-axis
that allows all offsets to be transformed to the transverse plane by what
amounts to a hard pulse (see Fig. 5a) during the final 2% of the pulse
length.
abolic,’’ with signal amplitude decreasing steeply with off-
set, so RC-BEBOP is a far better solution for broadband
excitation in the presence of relaxation than a hard pulse
of equivalent RF amplitude. Moreover, if we allow the
optimal control algorithm to generate the same linear
phase dispersion in the final magnetization that occurs
for a hard pulse (eg., the target function of Eq. (10), perfor-
mance is improved even more dramatically. For the
demanding case T1 = T2 = tp = 1 ms, this additional RC-
BEBOP uniformly excites 98–99% of the transverse magne-
tization over the entire offset range, with linear phase, giv-
ing only a small signal loss of 1–2% compared to the case of
PM-BEBOP with no relaxation.

One might expect a shorter pulse optimized without
relaxation to be an alternative solution to the 1 ms RC-
BEBOP considered. For example, in the absence of signif-
icant relaxation, a 125 ls BEBOP [4] designed with ±5%
tolerance to RF inhomogeneity gives uniform excitation
of 98% over an offset range of 40 kHz with phase devia-
tions from the x-axis of less than 2�. Although tp is an order
of magnitude less than a 1 ms T1 and T2, we still find sig-
nificant distortion in the excitation profile if relaxation is
included in the simulation. In this case, values of Mx for
the ideally calibrated RF range from 0.95 to 0.88 over
the bandwidth. For further comparison, a phase-alternated
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Fig. 4. The Mz (red) and Mx (blue) components of magnetization
resulting from application of the linear phase RC-BEBOP of Fig. 2b are
plotted as a function of time for resonance offsets (a) �25 kHz, (b) 0 kHz,
and (c) 25 kHz. The pulse mitigates relaxation effects by positioning spins
of each offset at the proper orientation near the z-axis that allows all
offsets to be transformed to the transverse plane in a relatively short time
at the end of the pulse. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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composite excitation pulse [15] with the largest bandwidth
(36 kHz for a 15 kHz amplitude) is 215 ls long and only
excites 75–85% of the magnetization over the bandwidth
when relaxation effects are included. Similar performance
in the presence of relaxation is obtained for broadband
polychromatic pulses [16]. Uniform excitation with reduced
signal loss in the presence of relaxation is not necessarily
achieved simply by using a shorter pulse.

The gain in signal that RC-BEBOP achieves over the
uncompensated PM-BEBOP for short T1, T2 is obtained
by finding trajectories that not only transform magnetiza-
tion to the desired target state, but keep the magnetization
close to the z axis for as long as possible during the pulse.
This is done concurrently for all spins in the optimized
range of resonance offsets and RF inhomogeneity. An
example for the ideal RF calibration is provided in
Fig. 3, showing the relatively small changes that occur in
spin orientation for each offset at progressively larger times
during the pulse. The outer edges of the bandwidth require
the most manipulation during the early stages of the pulse,
with the bulk of the magnetization transformed to the
transverse plane during the final 2% of the pulse.

An example illustrating the trajectories at several offsets
during the pulse is provided in Fig. 4 for the linear target
function used in Fig. 2 for the case T2 = 1 ms = tp. The
early part of the pulse is used to ‘‘stall’’ the spins near
the z axis and orient them properly so they can all be
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Fig. 5. RC-BEBOP pulse of Fig. 2b plotted as a function of time. (a) RF
amplitude plotted as x-phase (blue) and y-phase (green). The small, but
nonzero, amplitude for �80% of the pulse length, shown more clearly in
(b), affects primarily the extremes of the bandwidth, as demonstrated in
Fig. 3 and discussed in the text. Once the spins at each offset are oriented
properly during �0.98Tp, a hard pulse at the very end transforms all the
spins to transverse Mxy with linear phase as a function of offset.
Deviations from linearity are less than 0.3� for the ideally calibrated
pulse, with deviations less than 2� for RF inhomogeneity/miscalibration of
±5%. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
transformed to the target state by an effectively shorter
pulse at the end.

This mechanism is further illustrated by the pulse itself,
shown in Fig. 5. There are only minor manipulations of the
spins during the first 90% or so of the pulse. After 0.98Tp,
the spins are positioned so they can be transformed to the
transverse plane by a simple hard pulse. The y-amplitude of
inhomogeneity, is plotted for PM-BEBOP and RC-BEBOP as a function
of T2. Each point on a curve represents the performance of the
corresponding pulse for the associated value of T2 given on the graph
and the value of T1 shown in the figure legend. RC-BEBOP was designed
specifically for these values at each point. In contrast to a long pulse with
no compensation for relaxation effects, short T1 results in improved
performance for RC-BEBOP.
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Fig. 7. Quality factor of RC-BEBOP as a function of pulse length for
values of the ratio T2/T1 in the range [0,1] for T2 = 1 ms. Performance
design parameters are similar to Fig. 6, but with a smaller tolerance to RF
miscalibration of ±5%. The quality factor obtainable with RC-BEBOP is
relatively insensitive to T1 for values of T2 greater than 1 ms (see, also,
Fig. 6).
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the pulse is reminiscent of polychromatic pulses [16], which
are purely amplitude modulated. The small x-amplitude
modulation of RC-BEBOP only affects the extreme limits
of the bandwidth significantly (the outer 10%). Effects of
the small RF oscillations during the first half of the pulse
are demonstrable over the entire bandwidth at a numerical
level, acting to smooth deviations from uniformity in the
excitation profile. However, these deviations are signifi-
cantly less than 1% and would be difficult to detect in an
NMR experiment. Hence, a shorter 0.5 ms pulse starting
in the middle of the 1 ms pulse shown would perform as
well over 45 kHz bandwidth as the full pulse over 50 kHz.

As T2 becomes shorter, the same amount of time will
still be required to orient all the spins appropriately, so
the quality factor measuring pulse performance will
decrease with decreasing T2. Nonetheless, there are signifi-
cant signal gains available using RC-BEBOP compared to
an uncompensated pulse, as shown in Fig. 6, which com-
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Fig. 9. Experimental performance analogous to the simulations of Fig. 2b for
relaxation times T1 = 1.7 ms and T2 = 0.8 ms. All other parameters are the sa
pares quality factor as a function of T2 for PM-BEBOP
and RC-BEBOP. In addition, the calculations plotted in
the figure confirm that there is an advantage to shorter
T1, as suggested in the Introduction. For BEBOP in gen-
eral, where the only constraint is to find spin-trajectories
that arrive at the target, performance is degraded as T1

decreases. When relaxation is added as a constraint, RC-
BEBOP utilizes trajectories close to the z axis to not only
reduce T2 effects, but to increase signal due to T1 repolari-
zation of z-magnetization—the shortest possible T1 will
have the best performance in this scenario.

Thus, the length of the pulse does not matter after a cer-
tain point. Once a relaxation-compensated pulse of mini-
mum length is found that maximizes performance for a
particular application, optimizing with a longer pulse has
the obvious solution of zero RF amplitude at the beginning
followed by the minimum length pulse, giving the same
performance. Fig. 7 shows how the performance of RC-
BEBOP depends on pulse length for values of T1 between
1 ms and infinity for the specific choice of T2 = 1 ms. The
results reiterate the advantage of shorter T1 when optimiz-
ing pulse performance to include relaxation. The effect is
more pronounced only for T1 shorter than considered in
the figure.

The performance of RC-BEBOP also exhibits a reason-
able degree of tolerance to values of T2 other than the spe-
cific value used in optimizing the pulse, as shown in Fig. 8.
A pulse designed for the shortest expected T2 performs well
for all longer values (although not as well as a pulse opti-
mized specifically for the longer values).
4. Experimental

To test the performance of RC-BEBOP pulses, experi-
mental excitation profiles analogous to the simulations
shown in Fig. 2b were measured on a Bruker Avance
250 MHz spectrometer equipped with SGU units for RF
control and linearized amplifiers. A sample of 99.96%
D2O was saturated with CuSO4 to final relaxation times
at 296 K of T1 = 1.7 ms and T2 = 0.8 ms. A pulse of length
1 ms and maximum RF amplitude 15 kHz was optimized
(a) a hard pulse and (b) RC-BEBOP optimized for the measured sample
me as for the simulations. Further details can be found in Section 4.
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for these experimentally derived relaxation times, giving a
similar pulse shape to the one shown in Fig. 5, optimized
for T1 = T2 = 1 ms. The maximum RF amplitude was cal-
ibrated using a hard pulse and by comparing experimental
with theoretically expected offset patterns of several pattern
pulses [17]. Offset profiles for the optimized pulse and the
hard pulse were obtained by varying the offset of the pulses
from �25 kHz to 25 kHz in steps of 1 kHz. The results are
shown in Fig. 9. The experimental data provide an excel-
lent match with theory and represent a noticeable improve-
ment at offsets exceeding ±10 kHz.

5. Conclusion

We have derived an algorithm using optimal control
theory to mitigate the effects of T1 and T2 relaxation during
the application of long pulses. The procedure is quite gen-
eral and has many potentially useful applications. It was
applied here specifically to Broadband Excitation by Opti-
mized Pulses (BEBOP), since we have used them routinely
as a simple proxy for characterizing the performance and
capabilities of optimal control in general within the context
of NMR. The resulting relaxation-compensated BEBOPs
(RC-BEBOP) extend the utility of BEBOP pulses to appli-
cations in which T1, T2 are short compared to the pulse
length. Potential applications include, e.g., 13C spectros-
copy of proteins with paramagnetic centers. In addition,
the shortest possible T1 was shown to be advantageous
for the performance of optimized pulses, due to
repolarization.

Since the benchmark for performance of broadband
excitation in many applications is a phase-corrected hard
pulse, we also considered RC-BEBOPs which produce a
linear phase roll in the excited magnetization. Designing
pulses with specific phase characteristics for the final mag-
netization is a new approach in our optimal control work
and also has many potential applications. For the demand-
ing case of T1 and T2 equal to a pulse length of 1 ms, RC-
BEBOP uniformly excites �99% transverse magnetization
over a bandwidth of 50 kHz, tolerant to ±5% RF inhomo-
geneity, with deviations of less than 2� from linear phase at
the maximum inhomogeneity. Pulse performance is robust
when relaxation is longer than the pulse length.
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